HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 2

Year 12 Higher School Certificate Trial Examination Term 3 2018

STUD	ENT	NUN	IBER:

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
 Black pen is preferred
- NESA-approved calculators and drawing templates may be used
- A reference sheet is provided separately
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination room

Total marks - 100

Section I Pages 3-6

10 marks

Attempt Questions 1 - 10

Answer on the Objective Response Answer Sheet provided

Section II Pages 7 – 18

90 marks

Attempt Questions 11 – 16

Start each question in a new writing booklet

Write your student number on every writing booklet

Question	1-10	11	12	13	14	15	16	Total
Total								
	/10	/15	/15	/15	/15	/15	/15	/100

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10

- 1 The ellipse with equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$ has foci:
 - (A) $\left(0,\pm\sqrt{5}\right)$
 - (B) $\left(\pm\sqrt{5},0\right)$
 - (C) $\left(0, \frac{\pm\sqrt{5}}{3}\right)$
 - (D) $\left(\pm \frac{5}{\sqrt{3}}, 0\right)$
- The equation $x^3 + 2x^2 + 3 = 0$ has roots α , β and γ . Which equation has roots 2α , 2β and 2γ ?
 - (A) $(x-2)^3 + 2(x-2)^2 + 3 = 0$
 - (B) $2x^3 + 4x^2 + 6 = 0$
 - (C) $8x^3 + 8x^2 + 3 = 0$
 - (D) $x^3 + 4x^2 + 24 = 0$
- 3 The derivative of the implicitly defined curve $x^2 2xy + 4y^2 = 12$ is given by $\frac{dy}{dx} = \frac{x y}{x 4y}$. The x-values of the points on the curve where the tangents are vertical are:
 - (A) $x = \pm 1$
 - (B) $x = \pm 2$
 - (C) $x = \pm 4$
 - (D) x = 1

A hyperbola has asymptotes $y = \pm x$ and passes through the point (3,2). The Cartesian equation of the hyperbola is:

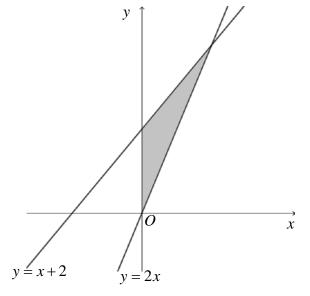
(A)
$$\frac{y^2}{3} - \frac{x^2}{3} = 1$$

(B)
$$\frac{x^2}{3} - \frac{y^2}{3} = 1$$

(C)
$$\frac{y^2}{5} - \frac{x^2}{5} = 1$$

(D)
$$\frac{x^2}{5} - \frac{y^2}{5} = 1$$

In the diagram below, the region bounded by the lines y = x + 2, y = 2x and the y-axis is rotated about the line y = 5.



NOT TO SCALE

The volume of the solid of revolution is given by:

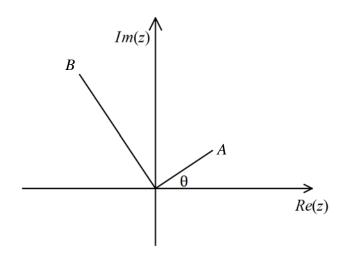
(A)
$$\pi \int_0^2 (16-14x+3x^2) dx$$

(B)
$$\pi \int_0^2 (14x - 16 - 3x^2) dx$$

(C)
$$\pi \int_0^2 (5-2x)^2 dx$$

(D)
$$\pi \int_0^2 (3-2x)^2 dx$$

- **6** By taking logarithms of both sides, or otherwise, the derivative of $y = x^{\sin x}$ with respect to x is:
 - (A) $x^{\sin x-1} \sin x$
 - (B) $x^{\sin x} \left(\cos x \log_e x + \frac{\sin x}{x} \right)$
 - (C) $x^{\sin x} (\cos x \log_e x)$
 - (D) $\cos x \log_e x + \frac{\sin x}{x}$
- 7 The points A and B in the diagram represent the complex numbers z_1 and z_2 respectively, where $|z_1| = 1$ and $\arg(z_1) = \theta$ and $z_2 = \sqrt{3}iz_1$.



NOT TO SCALE

 $z_2 - z_1$ in modulus-argument form is:

- (A) $2\left[\cos\left(120^{\circ}+\theta\right)+i\sin\left(120^{\circ}+\theta\right)\right]$
- (B) $3\left[\cos\left(120^{\circ}+\theta\right)+i\sin\left(120^{\circ}+\theta\right)\right]$
- (C) $2\left[\cos\left(120^{\circ}-\theta\right)+i\sin\left(120^{\circ}-\theta\right)\right]$
- (D) $3\left[\cos\left(120^{\circ}-\theta\right)+i\sin\left(120^{\circ}-\theta\right)\right]$

- 8 The equation $2x^4 + 9x^3 + 6x^2 20x 24 = 0$ has a root of multiplicity 3. The root of multiplicity 3 is:
 - (A) x = -2
 - (B) $x = \frac{3}{2}$
 - (C) $x = -\frac{1}{4}$
 - (D) $x = -\frac{1}{2}$
- 9 The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\sin x \cos x}$ is:
 - (A) $\log_e \sqrt{2}$
 - (B) $\log_e \sqrt{3}$
 - (C) $\log_e \frac{1}{\sqrt{2}}$
 - (D) $\log_e \frac{1}{\sqrt{3}}$
- 10 The minimum value of $f(x) = x \cos^{-1} \left(\frac{x}{3}\right)$ is:
 - (A) 0
 - (B) -3
 - (C) $-\frac{3\pi}{2}$
 - (D) -3π

End of Section I

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

- (a) Let $z = \frac{3-i}{1-2i}$.
 - (i) Express z in the form a+ib where a and b are real.
 - (ii) Hence, express z^4 in the form a+ib where a and b are real.

1

- (b) On the Argand diagram, shade in the region containing all points representing the complex number z such that $|z-(1+i)| \le 1$ and Re(z) > 1.
- (c) Find the square roots of -5-12i in the form a+ib where a and b are real.
- (d) If the roots of the equation $x^3 + 4x 2 = 0$ are α , β and γ , find the value of:

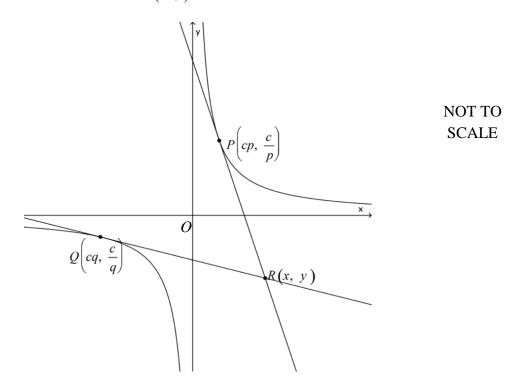
(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
.

(ii)
$$\alpha^4 + \beta^4 + \gamma^4$$
.

(e) Using the substitution
$$t = \tan \frac{x}{2}$$
, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{3 + 5\cos x}$.

(a) $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$ are points on the rectangular hyperbola $xy = c^2$, c > 0.

Tangents drawn at P and Q intersect at R(x, y).



2

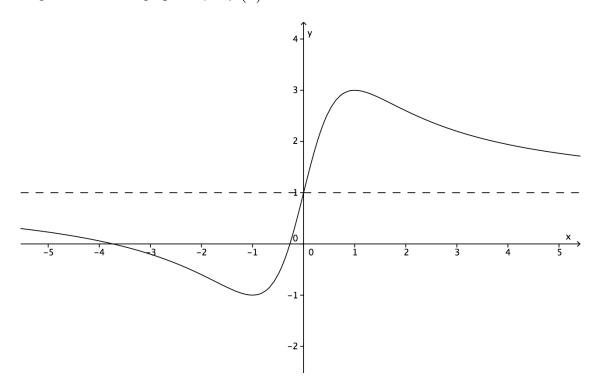
- (i) Show that the tangent at P has equation $x + p^2y = 2cp$.
- (ii) Show that R(x, y) has coordinates $x = \frac{2cpq}{p+q}$, $y = \frac{2c}{p+q}$.
- (iii) If P and Q move on the hyperbola such that $p^2 + q^2 = 2$, show that the Cartesian equation of the locus of R is $xy + y^2 = 2c^2$.

- (b) (i) Find A and B such that $\cos x = A(\cos x 2\sin x) + B(\sin x + 2\cos x)$.
 - (ii) Hence, find $\int \frac{\cos x}{\sin x + 2\cos x} dx$.

Question 12 continues on page 9

Question 12 (continued)

(c) The diagram shows the graph of y = f(x).



Draw a separate half-page diagram for each of the following functions, showing all asymptotes and intercepts.

(i)
$$y = \sqrt{f(x)}$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = \cos^{-1}[f(x)]$$

End of Question 12

Question 13 (15 marks) Start a new writing booklet

(a) By using a substitution, show that
$$\int_0^1 \frac{x}{(3x+1)^2} dx = \frac{2}{9} \log_e 2 - \frac{1}{12}.$$

(b) (i) Show that
$$\left(z - \frac{1}{z}\right)^5 = \left(z^5 - z^{-5}\right) - 5\left(z^3 - z^{-3}\right) + 10\left(z - z^{-1}\right)$$
.

(ii) By letting
$$z = \cos \theta + i \sin \theta$$
, or otherwise, show that
$$32 \sin^5 \theta = 2 \sin 5\theta - 10 \sin 3\theta + 20 \sin \theta.$$

(iii) Hence, find the exact value of
$$\int_0^{\frac{\pi}{2}} \sin^5 \theta \, d\theta$$

(c) The polynomial
$$P(x) = 3x^3 + 4x^2 + 5x - 6$$
 has only one real zero α , where $|\alpha| < 1$. 2 Factorise $P(x)$ over the complex field.

(d) A car of mass 800 kg travels along a straight horizontal road. The engine of the car produces a constant driving force of magnitude 2000N. At time t seconds, the speed of the car is v ms⁻¹. As the car moves, the total resistance to the motion of the car is of magnitude $(400 + 4v^2)N$. The car starts from rest.

(i) Show that the acceleration
$$a = 2 - \frac{v^2}{200}$$
.

(ii) Show that
$$v = 20 \left(\frac{e^{\frac{t}{5}} - 1}{e^{\frac{t}{5}} + 1} \right)$$
.

1

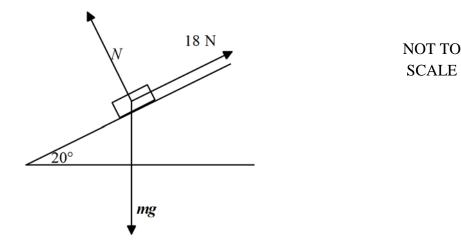
(iii) Find the limiting speed of the car, giving reasons for your answer.

End of Question 13

(a) Find
$$\int \frac{1}{e^x + 4e^{-x}} dx$$
.

- (b) It is given that $I_n = \int_0^4 x^n \sqrt{4-x} \, dx$, where $n \ge 0$, and $\int_0^4 \sqrt{4-x} \, dx = \frac{16}{3}$.
 - (i) Show that $I_n = \frac{8n}{2n+3}I_{n-1}$ for $n \ge 1$.
 - (ii) Hence find I_2 .
- (c) A box of mass 2 kg is pulled up a rough plane face by means of a light rope. The plane is inclined at an angle of 20° to the horizontal, as shown in the diagram below. The rope is parallel to the slope of the plane. The tension in the rope is 18N.

 Use $g = 9.8 \text{ ms}^{-2}$.

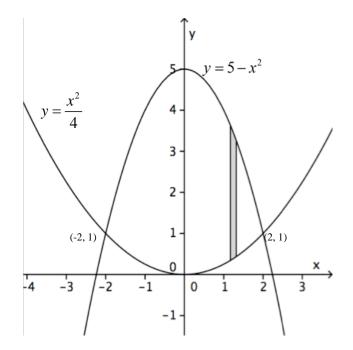


1

- (i) Show that the normal reaction of the plane on the box is 18.4 N, correct to one decimal place.
- (ii) Given that the friction between the box and the plane is $\frac{3}{5}$ of the normal reaction, find the acceleration of the box.

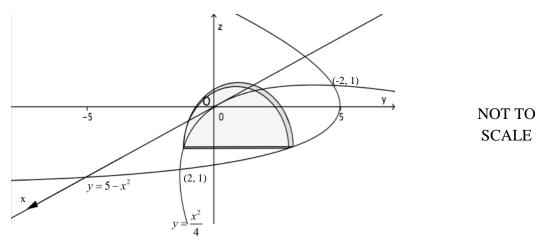
Question 14 continues on page 12

(d) The base of a solid is the region bounded by the curves $y = 5 - x^2$ and $y = \frac{x^2}{4}$, as shown in the diagram below. The two parabolas intersect at points (2,1) and (-2,1).



NOT TO SCALE

Cross sections by planes perpendicular to the *x*-axis are semi-circles with the diameter in the base, as shown in the diagram below.

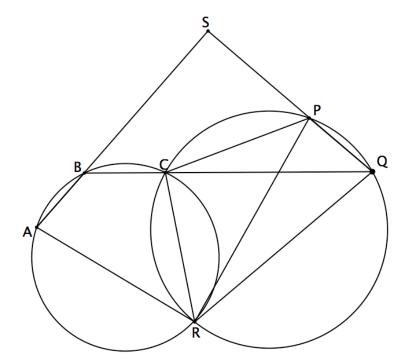


- (i) Show that the area of the semi-circle is the expression $A = \frac{25\pi}{128} (4 x^2)^2$.
- (ii) Hence, find the volume of the solid.

2

Question 14 (continued)

(e) In the diagram below, circles *ABCR* and *CPQR* intersect at *C* and *R*, and *BCQ* is a straight line. *AB* produced and *QP* produced meet at an external point *S*.



Copy or trace the diagram into your writing booklet.

(i) Prove that $\angle BAR = \angle QPR$.

2

NOT TO SCALE

(ii) Prove that ARPS is a cyclic quadrilateral.

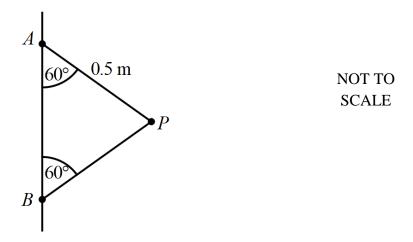
1

End of Question 14

Question 15 (15 marks) Start a new writing booklet

(a) The diagram below shows a particle P of mass m attached by two light strings to fixed points A and B, where A is vertically above B. The strings are both taut and P is moving in a horizontal circle with constant angular velocity $2\sqrt{3g}$ radians per second.

Both strings are 0.5 m in length and inclined at 60° to the vertical.



- (i) If T_A is the tension in the string AP and T_B is the tension in the string BP, show that $T_A T_B = 2mg$.
- (ii) Find the tensions, T_A and T_B , in the strings in terms of m and g.

Question 15 continues on page 15

Question 15 (continued)

(b) A particle of mass *m* is falling vertically under gravity in a resisting medium. The particle is released from rest.

The speed v, in metres per second, of the particle at a distance x from rest is given by $v^2 = 2kg \left[1 - e^{\frac{-x}{k}} \right]$, where k is a positive constant.

(i) Show that the magnitude of resistance, of the medium is $\frac{mv^2}{2k}$.

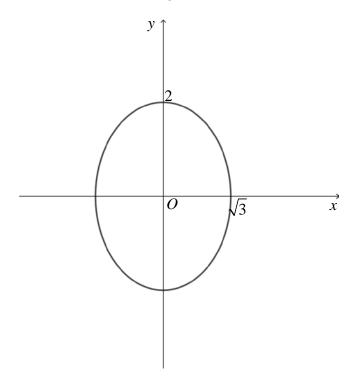
The particle is projected upwards in the same medium with speed $\sqrt{2kg}$.

- (ii) Show that the maximum height reached by the particle above the point of projection is $k \log_e 2$ metres.
- (iii) Find the time taken to reach the maximum height above the point of projection.

Question 15 continues on page 16

Question 15 (continued)

(c) The diagram of the ellipse E with equation is $\frac{x^2}{3} + \frac{y^2}{4} = 1$ shown below.



NOT TO SCALE

The line y = mx + 4, where m > 0 is a tangent to the ellipse E at the point P.

(i) Find the value of m.

2

(ii) Show that the coordinates of P are $\left(-\frac{3}{2},1\right)$.

1

The normal at P crosses the y-axis at the point A. The tangent at P crosses the y-axis at the point B.

(iii) Find the area of triangle APB.

3

End of Question 15

Question 16 (15 marks) Start a new writing booklet

- (a) One root of the cubic equation $z^3 + az + 10 = 0$, where a is real, is 1 + 2i.
 - (i) Find all three roots of the equation and find the value of a.

2

(ii) Plot all three roots on the Argand Diagram with a 1:1 horizontal: vertical axes.

1

(iii) A point z moves in the complex plane such that it lies on the circumference of a circle that passes through the points representing the roots of the equation. Find the equation of the locus of z in the form $|z-z_1|=r$.

3

- (b) It is known that n is a positive integer, where $n \ge 2$ and that a and b are real and positive.
 - (i) Prove that $\frac{a+b}{2} \ge \sqrt{ab}$.

1

It is known that for positive real numbers a_1, a_2, \dots that $\sqrt[n]{a_1 \times a_2 \times \dots \times a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}$.

(ii) Prove that $n! \le \left(\frac{n+1}{2}\right)^n$.

2

Question 16 continues on page 18

Question 16 (continued)

- (c) It is known that $\sec \theta > \tan \theta$ for $0 \le \theta < \frac{\pi}{2}$.
 - (i) Sketch $y = \sec \theta$ and $y = \tan \theta$ for $0 \le \theta < \frac{\pi}{2}$ on the same number plane.
 - (ii) Prove the identity $\sec \theta \tan \theta = \frac{1}{\sec \theta + \tan \theta}$.
 - (iii) Deduce from (i) and (ii) that $0 < \sec \theta \tan \theta \le 1$ for $0 \le \theta < \frac{\pi}{2}$, giving clear reasons.
 - (iv) Find the general solution to the equation $\sec \theta \tan \theta = \frac{1}{2}$.

End of Examination

Year 12 Mathematics Extension 2 Trial Examination Solutions 2018 Multiple Choice

Question 1

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$a = 3, b = 2$$

Eccentricity:

$$b^2 = a^2 \left(1 - e^2 \right)$$

$$4 = 9\left(1 - e^2\right)$$

$$e^2 = \frac{5}{9}$$

$$e = \frac{\sqrt{5}}{3} \left(e > 0 \right)$$

Foci:

$$S = \left(\pm 3 \times \frac{\sqrt{5}}{3}, 0\right)$$
$$-\left(\pm \sqrt{5}, 0\right)$$

$$=\left(\pm\sqrt{5},0\right)$$

(B)

Question 2

$$x^3 + 2x^2 + 3 = 0$$

New equation:

$$\left(\frac{x}{2}\right)^3 + 2\left(\frac{x}{2}\right)^2 + 3 = 0$$

$$\frac{x^3}{8} + \frac{2x^2}{4} + 3 = 0$$

$$x^3 + 4x^2 + 24 = 0$$

(D)

Question 3

$$\frac{dy}{dx} = \frac{x - y}{x - 4y}$$

For vertical tangents, let

$$x - 4y = 0$$

$$y = \frac{x}{4}$$

Sub into curve:

$$x^{2} - 2x\left(\frac{x}{4}\right) + 4\left(\frac{x}{4}\right)^{2} = 12$$

$$x^{2} - \frac{x^{2}}{2} + \frac{x^{2}}{4} = 12$$

$$16x^{2} - 8x^{2} + 4x^{2} = 12 \times 16$$

$$12x^{2} = 12 \times 16$$

$$x^{2} = 16$$

$$x = \pm 4$$

(C)

Question 4

Note that $y = \pm x$ are asymptotes and hyperbola passes through (3,2), that is y < x.

Therefore hyperbola is sideways.

$$y = \pm \frac{b}{a}x$$
$$b = \pm a$$
$$b^2 = a^2$$

$$b = a$$

$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$

Sub
$$(3,2)$$

$$\frac{9}{a^2} - \frac{4}{a^2} = 1$$

$$a^2 = 5$$

$$a = \sqrt{5} \left(a > 0 \right)$$

Equation is
$$\frac{x^2}{5} - \frac{y^2}{5} = 1$$
 (D)

Question 5

Slices perpendicular to the axis of rotation form annular discs.

$$R = 5 - 2x$$

$$r = 5 - (x+2)$$

$$= 3 - x$$

$$\Delta V = \pi \left(R^2 - r^2 \right) \Delta x$$

$$= \pi \left[\left(5 - 2x \right)^2 - \left(3 - x \right)^2 \right] \Delta x$$

$$= \pi \left[25 - 20x + 4x^2 - \left(9 - 6x + x^2 \right) \right] \Delta x$$

$$= \pi \left[25 - 20x + 4x^2 - 9 + 6x - x^2 \right] \Delta x$$

$$= \pi \left(3x^2 - 14x + 16 \right) \Delta x$$

(A)

Question 6

$$y = x^{\sin x}$$

$$\ln y = \sin x \ln x$$

$$\frac{1}{y}\frac{dy}{dx} = \cos x \ln x + \sin x \times \frac{1}{x}$$

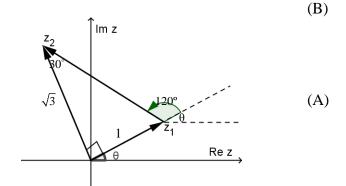
$$\frac{dy}{dx} = y \left(\cos x \ln x + \frac{\sin x}{x} \right)$$
$$= x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right)$$

Question 7

$$arg(z_2 - z_1) = 90^{\circ} + 30^{\circ} + \theta$$

= 120° + θ

$$|z_2 - z_1| = \sqrt{1^2 + \sqrt{3}^2}$$
= 2



Question 8

$$P(x) = 2x^4 + 9x^3 + 6x^2 - 20x - 24$$

$$P'(x) = 8x^3 + 27x^2 + 12x - 20$$

$$P''(x) = 24x^2 + 54x + 12$$

Let
$$P''(x) = 0$$

$$24x^2 + 54x + 12 = 0$$

$$4x^2 + 9x + 2 = 0$$

$$x = \frac{-9 \pm \sqrt{81 - 32}}{8}$$

$$=\frac{-1}{4}or-2$$

$$P(-2) = 2(-2)^4 + 9(-2)^3 + 6(-2)^2 - 20(-2) - 24$$

= 0

(A)

Question 9

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\sin x \cos x} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 x dx}{\sin x \cos x \sec^2 x}$$

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$$

$$= \left[\ln\left(\tan x\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

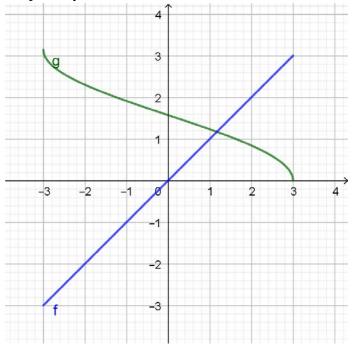
$$= \ln\left(\tan\frac{\pi}{3}\right) - \ln\left(\tan\frac{\pi}{4}\right)$$

$$= \ln\sqrt{3} - \ln 1$$

$$= \ln\sqrt{3}$$

Question 10

Graphically:



Minimum will occur at x = -3

$$f(-3) = -3 \times \cos^{-1}(-1)$$

$$= -3 \times \pi$$

$$= -3\pi$$
(D)

(B)

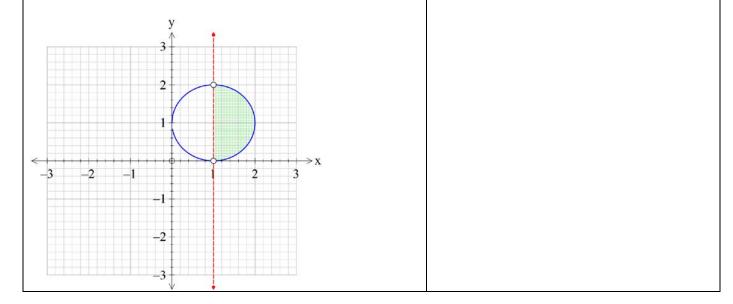
Question 11	
(a)	
(a) (i)	
$z = \frac{3-i}{1-2i}$	
$z = \frac{1-2i}{1-2i}$	
$= \frac{(3-i)(1+2i)}{(1-2i)(1+2i)}$ $= \frac{3+6i-i-2i^2}{1+4}$	
(1-2i)(1+2i)	
$-\frac{3+6i-i-2i^2}{}$	
1+4	
$=\frac{5+5i}{5}$	
=1+i	
(ii)	
$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$	
$z^{4} = \left(\sqrt{2}\right)^{4} \left(\cos \pi + i \sin \pi\right)$ $= 4\left(-1 + 0i\right)$	
$=4\left(-1+0i\right)$	

$$\left|z-\left(1+i\right)\right| \leq 1$$

Circle centre (1,1) radius 1 unit.

$$\operatorname{Re}(z) > 1$$

x > 1



(c) Let
$$(a+ib) = \sqrt{3} + i$$
 $a^3 + 2abi - b^3 = -5 - 12i$
 $a^3 - b^2 = -5 - ...(1)$
 $ab = -6 ...(2)$
 $a = -\frac{6}{b}$
 $\frac{36}{b^3} - b^2 = -5$
 $b^4 - 5b^2 - 36 = 0$
 $(b^2 - 9)(b^2 + 4) = 0$
 $b = \pm 3(b \text{ is } real)$
When $b = 3, a = -2$
Therefore the square roots are $2 - 3i$ and $-2 + 3i$.

(d)
 $x^3 + 4x - 2 = 0$
(i)
 $(a + \beta + \gamma)^2 = (\alpha + \beta)^3 + 2(\alpha + \beta)\gamma + \gamma^2$
 $= \alpha^2 + 2\alpha\beta + 2\alpha\gamma + 2\gamma\beta + \gamma^2$
 $\therefore \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$
 $= (0) - 2 \times 4$
 $= -8$
OR
 $a^3 + 4 - 2 = 0$
 $a^3 = 2 - 4a$
 $a^2 = \frac{2}{a} - 4$
 $\therefore \sum \alpha^2 = 2\sum \frac{1}{a} - 4(3)$
 $\therefore \sum \alpha^2 = 2\sum \frac{1}{a} - 4(3)$
 $\therefore \sum \alpha^2 = 2\sum \frac{1}{a} - 4(3)$
 $\therefore \alpha^2 + 4 - 2 = 0$
 $\alpha^3 + 4 - 2 = 0$
 $\alpha^3 = 2 - 4a$
 $\alpha^2 = \frac{1}{a} - 4$
 $\alpha^2 = \frac{1}{a}$

= 32

(e)
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{3+5\cos x}, \quad \tan\frac{x}{2} = t$$

$$\frac{x}{2} = \tan^{-1}t$$

$$x = 2\tan^{-1}t$$

$$\frac{dx}{dt} = \frac{2}{1+t^{2}}$$

$$dx = \frac{2}{1+t^{2}}dt$$
When $x = \frac{\pi}{2}, \quad t = 1$

$$x = 0, \quad t = 0$$

$$= \int_{0}^{1} \frac{1}{3+\frac{5(1-t^{2})}{1+t^{2}}} \times \frac{2}{1+t^{2}}dt$$

$$= \int_{0}^{1} \frac{1}{3(1+t^{2})+5(1-t^{2})} \times \frac{2}{1+t^{2}}dt$$

$$= \int_{0}^{1} \frac{1}{3(1+t^{2})+5(1-t^{2})} \times \frac{2}{1+t^{2}}dt$$

$$= \int_{0}^{1} \frac{2}{3+3t^{2}+5-5t^{2}}dt$$

$$= \int_{0}^{1} \frac{2}{3+3t^{2}+5-5t^{2}}dt$$

$$= \int_{0}^{1} \frac{1}{4-t^{2}}dt$$

$$= \int_{0}^{1} \frac{1}{4-t^{2}}dt$$

$$= \int_{0}^{1} \frac{1}{2-t} + \frac{1}{2+t}dt$$

$$= \int_{0}^{1} \frac{1}{2-t} + \frac{1}{2-t}dt$$

$$= \int_{0}^{1} \frac{1}{2-t}dt$$

$$=$$

(e)cont.	
$= \frac{1}{4} \int_0^1 \frac{1}{2-t} + \frac{1}{2+t} dt$	
$= \frac{1}{4} \int_0^1 -\frac{-1}{2-t} + \frac{1}{2+t} dt$	
$= \frac{1}{4} \left[-\ln 2 - t + \ln 2 + t \right]_{0}^{1}$	
$= \frac{1}{4} \left[\ln \left \frac{2+t}{2-t} \right \right]_0^1$	
$=\frac{1}{4}\left[\ln\left \frac{3}{1}\right - \ln\left \frac{2}{2}\right \right]$	
$=\frac{1}{4}\ln 3$	

Question 12	
(a)	
(i) ₂	
$xy = c^2$ Let alighe differentiation	
Implicitly differentiating	
$y + x\frac{dy}{dx} = 0$	
$\frac{dy}{dx} = -\frac{y}{x}$	
At $P\left(cp,\frac{c}{p}\right)$,	
$\frac{dy}{dx} = -\frac{c}{p} \div cp$	
$=-\frac{1}{p^2}$	
<u>r</u>	
Equation of tangent:	
$y - \frac{c}{p} = -\frac{1}{p^2} (x - cp)$	
$p^2 y - cp = -x + cp$	
$x + p^2 y = 2cp$	
(ii)	
Equation of tangent at P:	
$x + p^2 y = 2cp \dots (1)$	
$x + q^2 y = 2cq \dots (2)$	
(1)-(2):	
$y(p^2-q^2) = 2cp - 2cq$	
y(p-q)(p+q) = 2c(p-q)	
$y = \frac{2c}{p+q}$	
P · 4	
Sub into (1)	
$x + p^2 \times \frac{2c}{p+q} = 2cp$	
$x = 2cp - \frac{2cp^2}{p+q}$	
$=\frac{2cp^2 + 2cpq - 2cp^2}{p+q}$	
$=\frac{2cpq}{p+q}$	
$R = \left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$	
(p+q p+q)	

(iii)
$$x = \frac{2cpq}{p+q}$$

$$= pq \times \frac{2c}{p+q}$$

$$x = pqy$$

$$\frac{x}{y} = pq ...(2)$$

$$y = \frac{2c}{p+q}$$

$$p+q = \frac{2c}{y} ...(4)$$

$$p^{2}+q^{2} = 2$$

$$(p+q)^{2}-2pq = 2$$

$$(\frac{2c}{y})^{2}-2 \times \frac{x}{y} = 2$$

$$\frac{4c^{2}}{y^{2}} - \frac{2x}{y} = 2$$

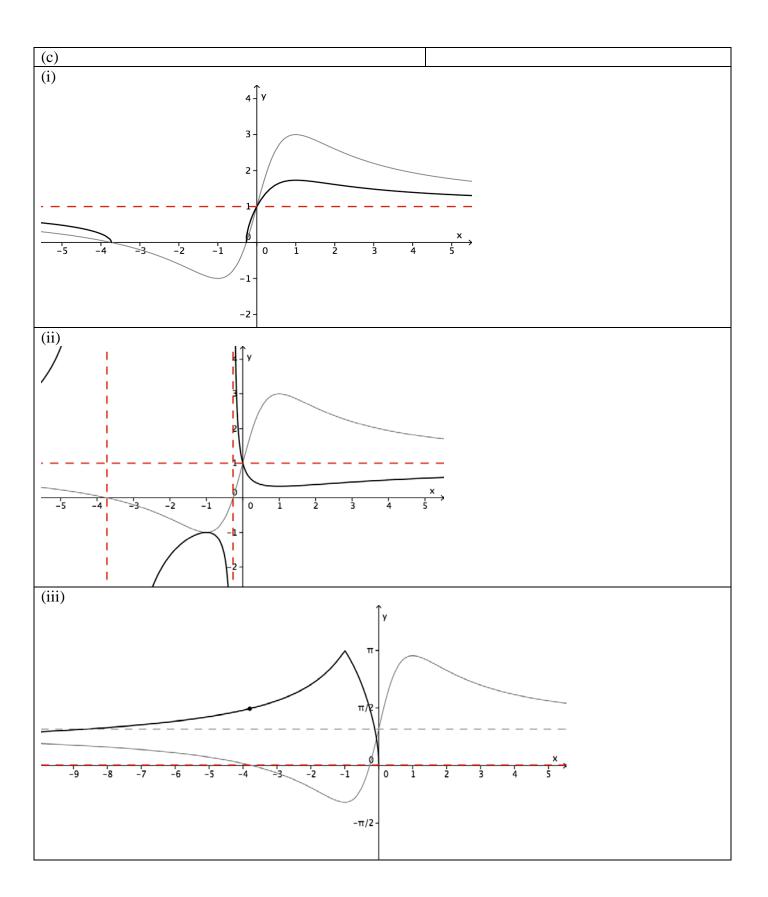
$$4c^{2}-2xy = 2y^{2}$$

$$2c^{2}-xy = y^{2}$$

$$xy + y^{2} = 2c^{2}$$

(b)
(i)
$$\cos x = A(\cos x - 2\sin x) + B(\sin x + 2\cos x)$$
 $\cos x = A\cos x + 2B\cos x + B\sin x - 2A\sin x$
 $\therefore A + 2B = 1$
 $B = 2A$
 $\therefore A + 4A = 1$
 $A = \frac{1}{5}$
 $B = \frac{2}{5}$
(ii)
 $\cos x = \frac{1}{5}(\cos x - 2\sin x + 2\sin x + 4\cos x)$

$$\int \frac{\cos x}{\sin x + 2\cos x} dx = \frac{1}{5} \int \frac{\cos x - 2\sin x + 2\sin x + 4\cos x}{\sin x + 2\cos x} dx$$
 $= \frac{1}{5} \left[\frac{\cos x - 2\sin x}{\sin x + 2\cos x} + \frac{2(\sin x + 2\cos x)}{\sin x + 2\cos x} \right] dx$
 $= \frac{1}{5} \left[\ln(\sin x + 2\cos x) + 2x \right] + C$



Ouestion 13

Question 13	
(a)	
$I = \int_0^1 \frac{x}{\left(3x+1\right)^2} dx$	
Let $u = 3x + 1$	
When $x = 0$, $u = 1$. When $x = 1$, $u = 4$.	
3x+1=u	
3x = u - 1	
$x = \frac{1}{3}(u-1)$	
u = 3x + 1	
$\frac{du}{dx} = 3$	
$dx = \frac{du}{3}$	
$I = \frac{1}{3} \int_{1}^{4} \frac{(u-1)}{3u^{2}} du$	
$=\frac{1}{9}\int_{1}^{4}\left(\frac{1}{u}-u^{-2}\right)du$	
$=\frac{1}{9}\bigg[\ln u + \frac{1}{u}\bigg]_1^4$	
$=\frac{1}{9}\left[\left(\ln 4 + \frac{1}{4}\right) - \left(\ln 1 + 1\right)\right]$	
$= \frac{1}{9} \left(\ln 2^2 + \frac{1}{4} - 1 \right)$	
$=\frac{1}{9}\left(2\ln 2 - \frac{3}{4}\right)$	
$= \frac{2}{9} \ln 2 - \frac{1}{12}$	
(b)	
(i) $ \left(z - \frac{1}{z}\right)^5 = z^5 - 5\frac{z^4}{z} + 10\frac{z^3}{z^2} - 10\frac{z^2}{z^3} + 5\frac{z}{z^4} - \frac{1}{z^5} $	
$= z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$	
$= (z^{5} - z^{-5}) - 5(z^{3} - z^{-3}) + 10(z - z^{-1})$	

(ii) Let
$$z = \cos\theta + i\sin\theta$$
 $z^n = \cos\theta + i\sin\theta$ $z^n = -i\sin\theta$ From (i)
$$\left(z - \frac{1}{z}\right)^5 = \left(z^5 - z^{-5}\right) - 5\left(z^3 - z^{-2}\right) + 10\left(z - z^{-1}\right)$$
 $\left(z - z^{-1}\right)^5 = 2i\sin\theta + 10 \times 2\sin\theta - 5 \times 2\sin\theta$ ($2i\sin\theta\right)^5 = 2i\sin5\theta + 10 \times 2\sin\theta - 10\sin3\theta$ $2^i i^5 \sin^2\theta - i(2\sin5\theta + 20\sin\theta - 10\sin3\theta)$ $32i\sin^3\theta - i(2\sin5\theta + 20\sin\theta - 10\sin3\theta)$ $32i\sin^3\theta - i(2\sin5\theta - 10\sin3\theta + 20\sin\theta)$ $32\sin^3\theta - 2\sin5\theta - 10\sin3\theta + 20\sin\theta$ (iii)
$$\frac{5}{8}\sin^5\theta + i(3\sin5\theta - 10\sin3\theta + 20\sin\theta)$$

$$= \frac{1}{16} \left[-\frac{1}{5}\cos5\theta + \frac{5}{3}\cos3\theta - 10\cos\theta \right]_0^{\frac{5}{2}}$$

$$= \frac{1}{16} \left[\left(-\frac{1}{5}\cos\frac{5\pi}{2} + \frac{5}{3}\cos\frac{3\pi}{2} - 10\cos\frac{\pi}{2} \right) - \left(-\frac{1}{5}\cos\theta + \frac{5}{3}\cos\theta - 10\cos\theta \right) \right]$$

$$= \frac{1}{16} \left[(0+0-0) - \left(-\frac{1}{5} + \frac{5}{3} - 10 \right) \right]$$

$$= \frac{8}{15}$$
 (c)
$$P(x) = 3x^3 + 4x^2 + 5x - 6$$
 Zeros of $P(x)$ are in the form $\pm \frac{6}{3} = \pm \frac{1}{3}, \pm \frac{2}{3}, \quad \alpha < 1$
$$P\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^3 + 4\left(\frac{2}{3}\right)^2 + 5\left(\frac{2}{3}\right) - 6$$

$$= 0$$
 Therefore $(3x - 2)$ is a factor of $P(x)$ By short division.
$$(3x^3 + 4x^2 + 5x - 6) = (3x - 2)(x^2 + 2x + 1 + 2)$$

$$= (3x - 2)(x^2 + 2x + 1 + 2)$$

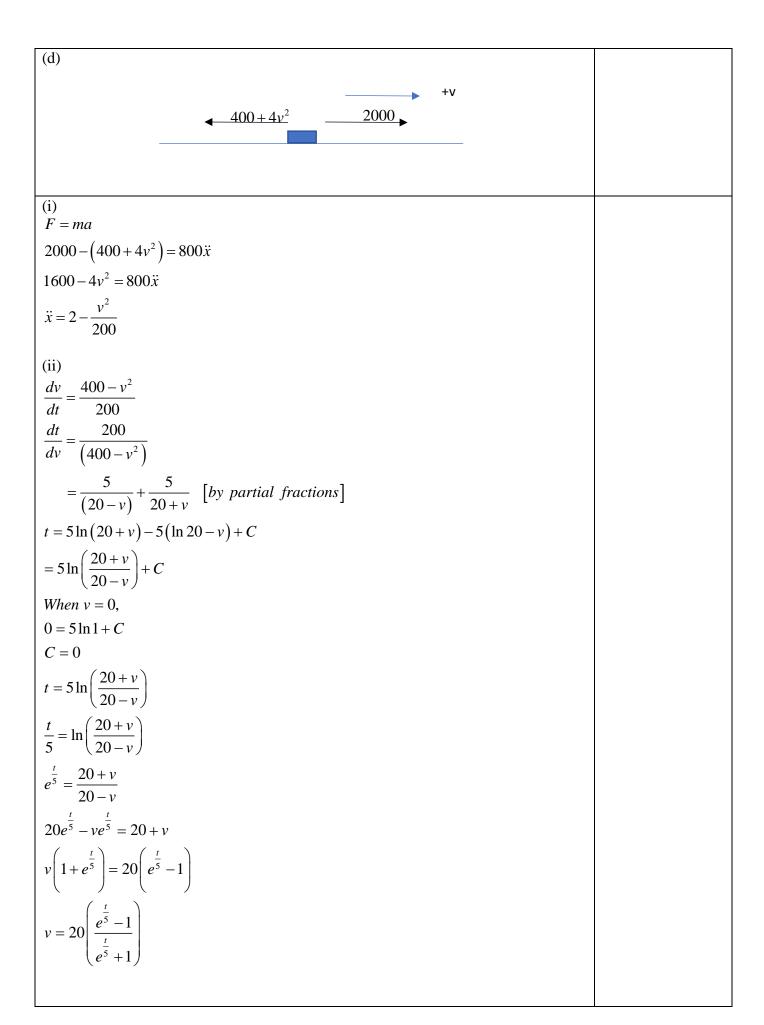
$$= (3x - 2)(x^2 + 2x + 1 + 2)$$

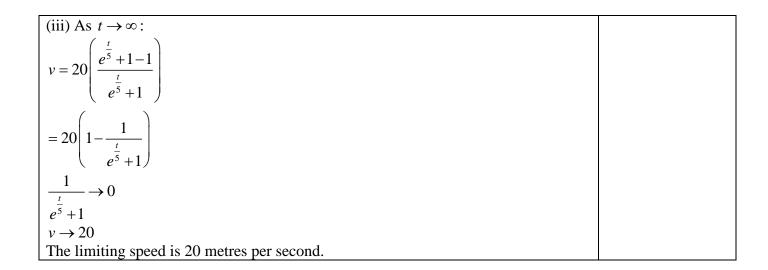
$$= (3x - 2)(x(x + 1)^2 - 2i^2)$$

$$= (3x - 2)(x(x + 1)^2 - 2i^2)$$

$$= (3x - 2)(x(x + 1) - \sqrt{2}i)(x + 1 + \sqrt{2}i)$$

$$= (3x - 2)(x(x - (1 + \sqrt{2}i))(x - (1 - \sqrt{2}i))$$

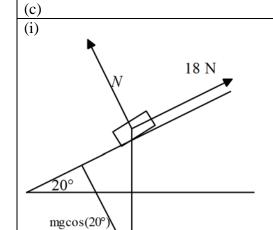




Question 14

Question 14	
(a)	
$I = \int \frac{1}{e^x + 4e^{-x}} dx$	
$= \int \frac{1}{e^x + \frac{4}{e^x}} dx$	
$= \int \frac{1}{\frac{e^{2x} + 4}{e^x}} dx$	
$= \int \frac{e^x}{e^{2x} + 4} dx$	
$=\int \frac{e^x}{\left(e^x\right)^2+\left(2\right)^2}dx$	
$=\frac{1}{2}\tan^{-1}\frac{e^x}{2}+C$	
(b)	
(b) (i)	
$I_n = \int_0^4 x^n \sqrt{4 - x} \ dx$	
$v' = \left(4 - x\right)^{\frac{1}{2}}$	
$u' = nx^{n-1} \qquad v = \frac{-2}{3} (4 - x)^{\frac{3}{2}}$	
$I_n = \left[\frac{-2}{3}x^n \left(4-x\right)^{\frac{3}{2}}\right]_0^4 + \frac{2}{3}n \int_0^4 x^{n-1} \left(4-x\right)^{\frac{3}{2}} dx$	
$= [0-0] + \frac{2}{3} n \left[\int_0^4 x^{n-1} (4-x) \sqrt{4-x} \ dx \right]$	
$= \frac{2}{3}n \left[4 \int_0^4 x^{n-1} \sqrt{4 - x} dx - \int_0^4 x^n \sqrt{4 - x} dx \right]$	
$=\frac{2}{3}n\big[4I_{n-1}-I_n\big]$	
$I_n + \frac{2n}{3}I_n = \frac{8nI_{n-1}}{3}$	
$I_n\left(1+\frac{2n}{3}\right) = \frac{8n}{3}I_{n-1}$	
$I_n\left(\frac{2n+3}{3}\right) = \frac{8n}{3}I_{n-1}$	
$I_n = \frac{8n}{2n+3} I_{n-1}$	

(b)	
(ii)	
$I_2 = \frac{8}{4+3}I_1$	
$=\frac{8}{7}\left(\frac{8}{2+3}I_0\right)$	
$=\frac{8}{7}\times\frac{8}{5}\times\frac{16}{3}$	
$=\frac{1024}{105}$	



Resolving forces perpendicular to the plane

mg

$$N = mg \cos 20^{\circ}$$

$$=2\times9.8\times\cos20^{\circ}$$

$$=18.4N (1dp)$$

(ii)

Resolving forces parallel to the plane:

$$2a = 18 - \frac{3}{5} \times 18.4 - 2 \times 9.8 \times \sin 20^{\circ}$$

$$2a = 18 - \frac{3}{5} \times 18.4 - 2 \times 9.8 \times \sin 20^{\circ}$$

$$a = \frac{1}{2} \left(18 - \frac{3}{5} \times 18.4 - 2 \times 9.8 \times \sin 20^{\circ} \right)$$

$$= 0.12829..$$

$$= 0.13 \text{ ms}^{-2}$$

(d)

(i)

 $PQ = y_1 - y_2$ and PQ is the diameter of the semi – circle.

$$2r = (5 - x^{2}) - \frac{x^{2}}{4}$$

$$2r = 5 - \frac{5x^{2}}{4}$$

$$2r = \frac{20 - 5x^{2}}{4}$$

$$2r = \frac{5(4 - x^{2})}{4}$$

$$\therefore r = \frac{5(4-x^2)}{8} \text{ units.}$$

$$\therefore \text{ Area of slice:} \quad A = \frac{1}{2}\pi r^2$$

$$= \frac{\pi}{2} \left[\frac{5(4-x^2)}{8} \right]^2$$

$$= \frac{\pi}{2} \left[\frac{25(4-x^2)^2}{64} \right]$$

$$\therefore A = \frac{25\pi (4-x^2)^2}{128} \text{ unit}^2$$

(ii)

Volume of slice:

$$\delta V = \frac{25\pi}{128} \left(4 - x^2 \right)^2 \delta x$$

∴ Volume of solid:

$$V = \lim_{\delta x \to 0} \sum_{-2}^{2} \frac{25\pi}{128} (4 - x^{2})^{2} \delta x$$

$$V = \frac{25\pi}{128} \int_{-2}^{2} (4 - x^{2})^{2} dx$$

$$= \frac{25\pi}{64} \int_{0}^{2} (4 - x^{2})^{2} dx$$

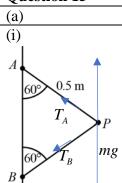
$$= \frac{25\pi}{64} \int_{0}^{2} (16 - 8x^{2} + x^{4}) dx$$

$$= \frac{25\pi}{64} \left[16x - \frac{8x^{3}}{3} + \frac{x^{5}}{5} \right]_{0}^{2}$$

$$= \frac{25\pi}{64} \left[16(2) - \frac{8(2)^{3}}{3} + \frac{(2)^{5}}{5} - 0 \right]$$

$$\therefore V = \frac{20\pi}{3} \text{ unit}^{3}$$

Question 15



$$\sin 60^\circ = \frac{r}{0.5}$$

$$r = \frac{1}{2} \times \frac{\sqrt{3}}{2}$$

$$r = \frac{\sqrt{3}}{4}$$
 m

Vertically:

$$T_A \cos 60^\circ - T_B \cos 60^\circ - mg = 0$$

$$T_A \times \frac{1}{2} - T_B \times \frac{1}{2} = mg$$

$$\frac{1}{2}(T_A - T_B) = mg$$

$$T_A - T_B = mg \quad ...(1)$$

(ii)

Horizontally:

 $T_A \sin 60^\circ + T_B \sin 60^\circ = mr\omega^2$

$$\frac{\sqrt{3}}{2} \left(T_A + T_B \right) = m \times \frac{\sqrt{3}}{4} \times \left(2\sqrt{3g} \right)^2$$

$$\frac{\sqrt{3}}{2}(T_A + T_B) = \frac{\sqrt{3}m}{4} \times 12g$$

$$\frac{1}{2}(T_A + T_B) = \frac{m}{4} \times 12g$$

$$T_A + T_B = 6gm \dots (2)$$

$$(1)+(2)$$
:

$$2T_A = 8gm$$

$$T_A = 4gm \text{ N}$$

$$T_B = 2gm \text{ N}$$

(b)
(i)
$$F = m\ddot{x}$$

$$mg - R = m\ddot{x}$$

$$R = m(g - \ddot{x})$$

$$= mg\left(1 - k \times \frac{e^{-\frac{x}{k}}}{k}\right)$$

$$= mg\left(1 - e^{-\frac{x}{k}}\right)$$

$$= \frac{m}{2k} \times 2kg\left(1 - e^{-\frac{x}{k}}\right)$$

$$= \frac{mv^2}{2k}$$
OR
$$F = m\ddot{x}$$

$$mg - R = m\ddot{x}$$

$$mg - R = m\ddot{x}$$

$$g - \frac{R}{m} = \frac{1}{2}\frac{dv^2}{dx}$$

$$= \frac{1}{2}\frac{d}{dx}\left[2kg\left(1 - e^{-\frac{x}{k}}\right)\right]$$

$$= kg\left(\frac{1}{k}e^{-\frac{x}{k}}\right)$$

$$= ge^{-\frac{x}{k}}$$
Since $v^2 = 2kg\left(1 - e^{-\frac{x}{k}}\right)$

$$= \frac{v^2}{2kg} = 1 - e^{-\frac{x}{k}}$$

$$e^{-\frac{x}{k}} = 1 - \frac{v^2}{2kg}$$

$$g - \frac{R}{m} = g - \frac{v^2g}{2kg}$$

$$- \frac{R}{m} = -\frac{v^2}{2k}$$

$$\therefore R = \frac{mv^2}{m}$$

(ii)
$$m\ddot{x} = -mg - \frac{mv^2}{2k}$$

$$\ddot{x} = -\left(g + \frac{v^2}{2k}\right)$$

$$v\frac{dv}{dx} = -\left(\frac{2kg + v^2}{2k}\right)$$

$$\frac{dv}{dx} = -\left(\frac{2kg + v^2}{2ky}\right)$$

$$\frac{dx}{dv} = -\left(\frac{2kv}{2kg + v^2}\right)$$

$$x = -k\int \frac{2v}{2kg + v^2} dv$$

$$= -k\ln(2kg + v^2) + C$$
Sub $x = 0, v = \sqrt{2kg}$

$$0 = -k\ln(2kg + 2kg) + C$$

$$C = k\ln 4kg$$

$$x = k\ln 4kg - k\ln(2kg + v^2)$$
Let $v = 0$

$$x = k\ln 4kg - k\ln 2kg$$

$$(4kg)$$

 $= k \ln 2$

(iii)
$$\ddot{x} = -\left(g + \frac{v^2}{2k}\right)$$

$$\frac{dv}{dt} = -\left(\frac{2kg + v^2}{2k}\right)$$

$$\frac{dt}{dv} = -2k\left(\frac{1}{\left(\sqrt{2kg}\right)^2 + v^2}\right)$$

$$t = \frac{-2k}{\sqrt{2kg}} \tan^{-1}\left(\frac{v}{\sqrt{2kg}}\right) + D$$
When $t = 0, v = \sqrt{2kg}$

$$0 = -\frac{2k}{\sqrt{2kg}} \tan^{-1}\left(\frac{\sqrt{2kg}}{\sqrt{2kg}}\right) + C$$

$$C = \frac{2k}{\sqrt{2kg}} \tan^{-1}1$$

$$C = \frac{2k}{\sqrt{2kg}} \times \frac{\pi}{4}$$

$$= \frac{k\pi}{2\sqrt{2kg}}$$

$$t = -\frac{2k}{\sqrt{2kg}} \tan^{-1}\left(\frac{v}{\sqrt{2kg}}\right) + \frac{\pi k}{2\sqrt{2kg}}$$
Let $v = 0$

$$t = \frac{\pi k}{2\sqrt{2kg}}$$
 seconds.

(c)	
(c) (i)	
$4x^2 + 3y^2 = 12(1)$	
y = mx + 4(2)	
Sub (2) into (1):	
$4x^2 + 3 \lceil m^2 x^2 + 8mx + 16 \rceil = 12$	
$4x^2 + 3m^2x^2 + 24mx + 48 = 12$	
$x^2 \left(4 + 3m^2 \right) + 24mx + 36 = 0$	
For tangent $\Delta = 0$	
$(24)^2 - 4(3m^2 + 4) \times 36 = 0$	
$576m^2 - 432m^2 - 576 = 0$	
$144m^2 = 576$	
$m^2 = 4$	
m = 2(m > 0)	
(ii)	
Sub $m = 2$ into equation above	
$x^{2}(3\times4+4)+48x+36=0$	
$16x^2 + 48x + 36 = 0$	
$\left(2x+3\right)^2=0$	
$x = \frac{-3}{2}$	
When $x = \frac{-3}{2}$,	
$y = 2\left(\frac{-3}{2}\right) + 4$	
= -3 + 4	
=1	
$P\left(\frac{-3}{2},1\right)$	
(iii)	
Gradient of tangent is 2, gradient of normal is $-\frac{1}{2}$	
Equation of normal is	
$y - 1 = \frac{-1}{2} \left(x + \frac{3}{2} \right)$	
$2y - 2 = -x - \frac{3}{2}$	
4y - 4 = -2x - 3	
4y + 2x - 1 = 0	
B(0,4) B	

A: Let $x = 0$ in normal $4y - 1 = 0$	
$y = \frac{1}{4}$	
$A\left(0,\frac{1}{4}\right)$	
$A = \frac{1}{2} \left(4 - \frac{1}{4} \right) \times \frac{3}{2}$	
$=\frac{45}{16} units^2$	

Question 16

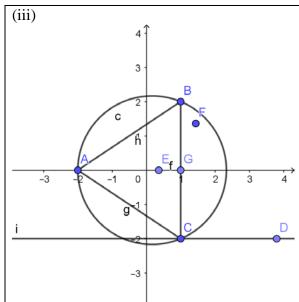
(a)

(i)

The coefficients of $z^3 + az + 10 = 0$ are real.

Let the roots be α , 1-2i, 1+2i.

Product of the roots: $\alpha(1-2i)(1+2i) = -10$ $5\alpha = -10$ $\alpha = -2$ Sum of roots two at a time: $\alpha(1-2i) + \alpha(1+2i) + (1+2i)(1-2i) = a$ $2\alpha + 5 = a$ a = 1 $z^3 + az + 10 = 0$ (iii)



By symmetry, centre must be on the x-axis. Construct CD parallel to the x-axis.

$$\arg\left(-2-\left(1-2i\right)\right) = \arg\left(-3+2i\right)$$

$$=\pi-\tan^{-1}\frac{2}{3}$$

$$\angle DCA = \pi - \tan^{-1} \frac{2}{3}$$

By
$$co-int\ erior\ \angle's$$

$$\angle CAE = \pi - \left(\pi - \tan^{-1}\frac{2}{3}\right)$$
$$= \tan^{-1}\frac{2}{3}$$

$$\angle CEG = 2 \tan^{-1} \frac{2}{3} \left(\text{angle at the centre is twice the angle at the circumference} \right)$$

In $\triangle CEG$

$$\sin \theta = \frac{2}{r}$$

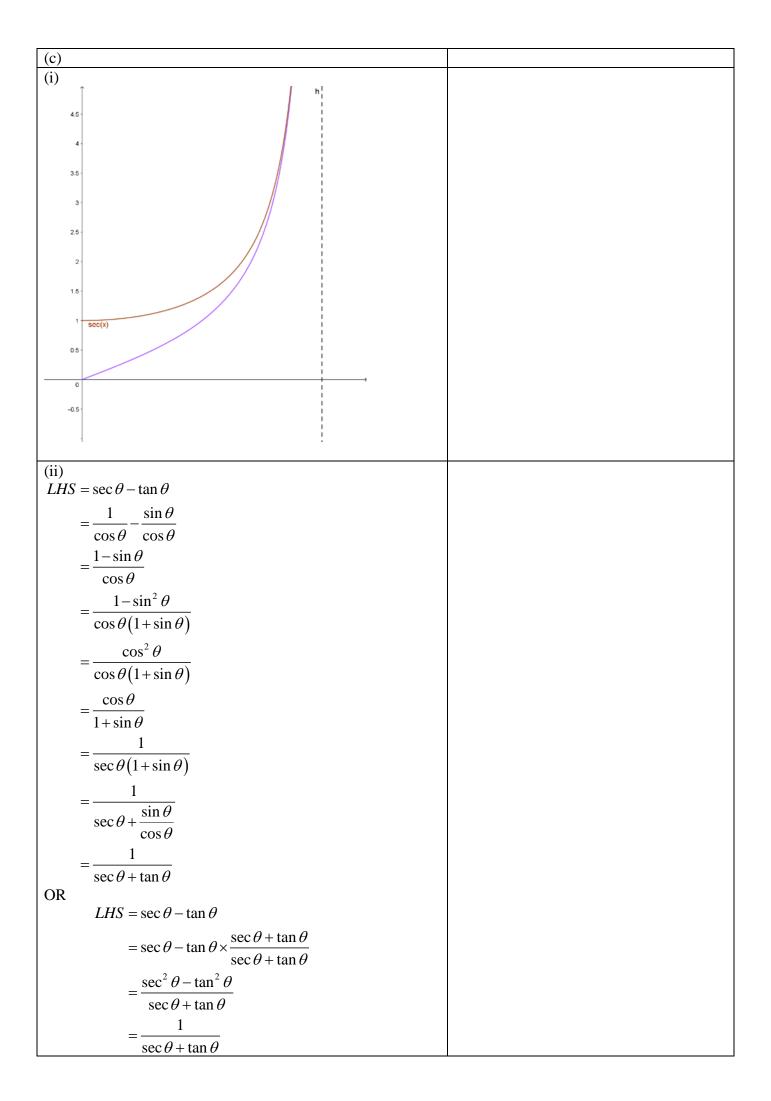
$$r = \frac{2}{\sin\left(2\tan^{-1}\frac{2}{3}\right)}$$

$$=\frac{13}{6}$$

Therecentre center is $\left(\frac{1}{6},0\right)$

Equation of locus is
$$\left| z - \frac{1}{6} \right| = \frac{13}{6}$$

(b)	
(i)	
$\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$	
$\left(\sqrt{a}\right)^2 - 2\sqrt{a}\sqrt{b} + \left(\sqrt{b}\right)^2 \ge 0$	
$a+b \ge 2\sqrt{ab}$	
$\frac{a+b}{2} \ge \sqrt{ab}$	
(ii)	
$n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$	
From what is given	
$\sqrt[n]{n \times (n-1) \times (n-2) \times \dots \times 2 \times 1} \le \frac{n + (n-1) + (n-2) + \dots + 2 + 1}{n}$	
$\sqrt[n]{n!} \le \frac{1}{n} \times \frac{n}{2} (n+1)$	
$\sqrt[n]{n!} \le \frac{n+1}{2}$	
$n! \le \left(\frac{n+1}{2}\right)^n$	



(iii)

Given that $\sec \theta > \tan \theta$ for $0 \le x < \frac{\pi}{2}$

 $\sec \theta > \tan \theta$

 $\sec \theta - \tan \theta > 0$

$$\sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta}$$

From graph $\sec \theta + \tan \theta \ge 1$

$$1 \ge \frac{1}{\sec \theta + \tan \theta}$$

 $\therefore \sec \theta - \tan \theta \le 1$

 $0 < \sec \theta - \tan \theta \le 1$

OR

As graphically shown, $y_2 - y_1 = \sec \theta - \tan \theta$

and
$$\sec \theta - \tan \theta > 0$$
 for $0 \le \theta < \frac{\pi}{2}$

At $\theta = 0$, $\sec \theta - \tan \theta = 1$ i.e. the distance is maximum

As
$$\theta \to \frac{\pi}{2}$$
, $(\sec \theta - \tan \theta) \to 0$

Hence $0 < \sec \theta - \tan \theta \le 1$.

(iv)

$$\sec \theta - \tan \theta = \frac{1}{2} \dots (1)$$

$$\frac{1}{\sec\theta + \tan\theta} = \frac{1}{2}$$

$$\sec \theta + \tan \theta = 2 \dots (2)$$

$$(1) + (2)$$

$$2\sec\theta = \frac{5}{2}$$

$$\sec\theta = \frac{5}{4}$$

$$\cos\theta = \frac{4}{5}$$

$$\theta = \cos^{-1}\frac{4}{5}$$

$$\theta = 2k\pi \pm \cos^{-1}\left(\frac{4}{5}\right)$$